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The superconducting instability of the Fermi-liquid state is investigated by considering anisotropic electron-
boson couplings. Both electron-electron interactions and anisotropic electron-boson couplings are treated with
a renormalization group method that takes into account retardation effects. Considering a noninteracting cir-
cular Fermi surface, we find analytical solutions for the flow equations and derive a set of generalized Eliash-
berg equations. Electron-boson couplings with different momentum dependences are studied and we find
superconducting instabilities of the metallic state with competition between order parameters of different
symmetries. Numerical solutions for some couplings are given to illustrate the frequency dependence of the
vertices at different coupling regimes.
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I. INTRODUCTION

Many-body interactions have important effects on the
electronic properties of correlated materials and are subject
of great attention. The main role played by the electron-
phonon interaction in the conventional superconductivity
�SC� has enhanced the interest in electron-boson coupling. In
the formation of Cooper electron pairs in conventional super-
conductors the attractive pairing interaction is mediated by
phonons as established by the Bardeen-Cooper-Schreiffer
�BCS� theory of superconductivity. The Eliashberg theory1,2

provides the appropriate equations to obtain the supercon-
ducting temperature at which pairing occurs, as well as the
energy gap created in the electronic density of states �DOS�.
The Eliashberg equations describe an effective electron-
electron interaction due to the exchange of any form of
bosons. The Eliashberg function �2F���, which gives the
spectral electron-phonon density, and the Coulomb pseudo-
potential �� �Anderson-Morel potential3�, which characterize
the pairing interaction, are input parameters of the Eliashberg
equations.

Direct evidence that the bosons mediating the attractive
interaction in conventional superconductors are phonons was
provided by tunneling experiments.4–6 Following the work of
McMillan and Rowell,5,7 by inversion of tunneling data, a
unique value of �2F��� as well of �� is provided by the
structure in the electron-tunneling current measured as a
function of the applied voltage, the dI /dV characteristic. For
BCS superconductors the gap created in the DOS when pair-
ing takes place is isotropic of s-wave symmetry. However,
anisotropic electron-phonon coupling has been reported later
on in some borocarbide material superconductors as
YNi2B2C and LuNi2C.8,9 Furthermore the superconducting
energy gap of MgB2 was found to vary on the Fermi surface
�FS� due to the momentum dependence of the electron-
phonon interaction. The superconducting properties of
this material, which present the highest superconducting
transition temperature �Tc=39 K� among the binary
compounds,10,11 are explained by the fully anisotropic
Eliashberg theory2,12 by including the momentum depen-

dence of the electron-phonon coupling combined with
density-functional calculations.13

The anisotropic Eliashberg theory has also been applied to
materials with other pairing symmetries14,15 such as the cop-
per oxides which present a dx2−y2-wave order parameter. In
this case, besides the phonons, other kinds of bosons have
been considered, as for example, spin fluctuations.16 In the
copper oxides high-Tc superconductors there is currently not
a consensus about the nature of the pairing interaction. The
d-wave symmetry gap experimentally measured seems to fa-
vor a purely electronic pairing interaction. However a kink,
i.e., a change in the slope in the quasiparticle energy disper-
sion has been reported by angle-resolved photoemission
spectroscopy �ARPES� experiments17 at an energy of about
50 meV. This kink could indicate a renormalization effect
similar to that appearing in conventional superconductivity.
In the cuprates, at this energy scale, there are multiple exci-
tations such as phonons and spin fluctuations, which could
be responsible for the renormalization. At a higher energy of
350 meV, other kinks have been reported related with
bosonic excitations.18 Both phonons17 and spin fluctuations19

have been proposed but the nature of the bosonic mode re-
mains under debate. Therefore strong electron-electron cor-
relations as well as strong electron-boson coupling have to
be considered in order to analyze the experimental data.20

Experiments carried out by different techniques on hole-
doped cuprates with oxygen isotope substitution �16O-18O�
�Refs. 21–23� have claimed that phonons play an important
role in cuprates. Recent data have provided evidence that the
electron-phonon interactions are responsible for the origin of
the nodal kink24 confirming earlier ARPES results25 which
had indicated an anisotropic electron-phonon interaction in
cuprates in both the normal and superconducting states.
However, the mechanism of pairing in high-temperature su-
perconductors is still under discussion.

We focus here on the study of the superconducting insta-
bility with pairing mediated by anisotropic electron-boson
coupling. The most general case of anisotropic coupling of
electrons to bosonic modes is considered with a combination
of many symmetry channels. We follow the asymptotically
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exact renormalization group �RG� approach developed in
Ref. 26. This extension of the RG treats electron-electron
and electron-phonon interaction on an equal footing. Analyti-
cal and numerical solutions of the flow equations for the
BCS vertices are obtained. Generalized Eliashberg equations
and the corresponding MacMillan-Rowell and Allen-Dynes
expressions for Tc are derived from the RG flow equations.
The Migdal theorem27 assumed in the Eliashberg theory is
understood in terms of a large-N expansion in the RG
approach.26 We include both retardation effects and the pres-
ence of multiple energy scales in the problem. Retardation
effects in the one-dimensional �1D� Holstein-Hubbard model
at half filling have been found to be important near the tran-
sition between spin-density wave �SDW� and charge-density
wave �CDW� states.28 The classical and quantum aspects of
fermion-driven lattice instabilities have been analyzed using
an extension of the RG method similar to the one followed in
the present work.29 The calculation of the gap and the struc-
ture of the phase diagram of 1D tight-binding models such as
molecular crystal and Su-Schrieffer-Heeger models have
been analyzed at the one-loop level.29 Furthermore, RG
methods have been recently used to study the Cooper insta-
bility in graphene.30,31

The paper is organized as follows. In Sec. II the RG
analysis is developed. In Sec. III the generalized Eliashberg
equations are discussed. Section IV addresses results ob-
tained for electron-boson couplings with different angular
dependences. Finally in Sec. V the work is summarized and
some conclusions are given.

II. RENORMALIZATION GROUP ANALYSIS

The RG method for interacting electrons32 is adopted here
to analyze the instabilities of a two-dimensional �2D� Landau
Fermi liquid �FL�. We start from a given geometry of the
Fermi surface of the noninteracting system and we treat the
microscopic interactions within one-loop RG, which captures
the essential physics of the problem. In this way assumption
of a predetermined order parameter is not needed. Since we
are interested in the superconducting instability, both
electron-electron and electron-boson interactions have to be
considered. Therefore we follow the asymptotically exact
RG scheme extended to include interacting fermions coupled
to bosonic modes.26

In the Wilson-type RG theory,32 at a first step, the modes
of the momentum space above a cutoff � are integrated out.
The remaining phase space in a 2D system is a ring of radius
kF and width of 2� around the Fermi energy EF. In the
second step the equations are solved by a large-N method,
with N=EF /�, N being the number of patches at the Fermi
surface. Here a 2D square lattice is considered at low fillings
so that the FS has an almost circular shape. The interactions
are parametrized by the on-site Coulomb repulsion u0, the
electron-boson coupling g, and the Einstein frequency �E of
the bosons. In this case the electron-boson constant is �
=2N�0�g2 /�E, where N�0� is the density of states at the
Fermi level.

The RG equations are derived in the path-integral
representation.26 In order to obtain a combination of many

symmetry channels, the most general anisotropic electron-
boson coupling g�i , j� is considered. The electron-boson cou-
pling can be integrated out exactly leading to an electron-
electron effective problem with retarded interactions. The
retarded electron-electron interaction has the form

ũ�4,3,2,1� = u�4,3,2,1� − 2g�1,3�g�2,4�D�1 − 3� , �1�

where the phonon propagator is

D�q� =
�q

�2 + �q
2 . �2�

We adopt the notation q= �� ,q�, 1= ��1 ,k1�, and so forth.
Spin indices are omitted in this notation. Particles 1 and 2 are
incoming and scatter into 3 and 4, respectively. We will fo-
cus on processes involving particles with opposite spins. The
processes involving particles with same spins can be ob-
tained from these due to SU�2� symmetry.33 For our almost
circular FS the effective retarded electron-electron interac-
tion ũ gives two types of scatterings in the RG: the forward
scattering, with k1=k3 and k2=k4, which, as in the case of
pure electron-electron interaction, does not get renormalized
but contributes to the electron self-energy, and the scattering
in the Cooper channel. While the forward channel does not
flow under the RG, the BCS vertex �k1=−k2 , k3=−k4� flows
at one loop in the RG equation

d

d�
ũ�1,3,�� = − �

−�

� d�

�
�

0

2� d�

2�

��ũ�1,�,�,��ũ��,�,3,��
��

2 + Z�
2��,���2 ,

�3�

where 1���1 ,�1�, 3���3 ,�3�, and � represents the RG
scale �=ln��0 /�� with �0 as the initial bandwidth. Equation
�3� is obtained from the cutoff independent condition im-
posed to the interaction vertex

d

d�
ũ�4,3,2,1� = 0. �4�

The vertices are labeled according to the angle around the
FS �i since the dependence on the radial part of the momen-
tum is irrelevant here.32 However, the dependence on the
modulus �q� is important at larger fillings34,35 where, in addi-
tion, electron-electron interactions may lead to renormaliza-
tion of the FS shape.36 In order to solve the differential Eq.
�3� the pairing potential is decomposed in terms of the irre-
ducible representation of the space group of the underlying
lattice. For the case of a 2D square lattice the space group is
D4. The irreducible representations of the D4 space group
contain four one-dimensional �singlets�: A1 and A2 for con-
ventional and unconventional s-wave channels, B1 for dx2−y2

channel, and B2 for dxy channel and one two-dimensional
�triplet�: E corresponding to p-wave symmetry with degen-
erate eigenvalues for the two channels px and py. The corre-
sponding basis functions are chosen to be
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A1 	n
1��� = Cn cos�4�n − 1���

B1 	n
2��� = C0 cos��4�n − 1� + 2���

B2 	n
3��� = C0 sin��4�n − 1� + 2���

A2 	n
4��� = C0 sin�4n��

E �	n
5���= C0 sin��2n − 1���

	n
6���= C0 cos��2n − 1��� 	 �5�

with n ranging from 1 to �, and the normalization factors
Cn=1 /
��1+
n1�. Therefore we can express the pairing po-
tential in the more general form

ũ�i, j,�� = �
�

�
m,n

umn
� ��i,� j,l�fmn

� ��i,� j� , �6�

where � labels the representation of the group and

fmn
� ��i,� j� = 	m

� ��i�	n
��� j� , �7�

where 	m
� ��� are the corresponding basis functions given in

Eq. �5�. The normalized basis functions 	m
� ��� are orthogonal

�
0

2�

	m
� ���	n

�����d� = 
mn
��� �8�

and form a complete basis set. By discretizing the frequency
integral into a sum, taking advantage of the orthogonality
and completeness of the 	 basis and restricting ourselves to
frequencies below the cutoff, the two-dimensional matrix
ũ�i , j ,�� expressed in Eq. �6� can be transformed into a four-
dimensional tensor �ûnm

� ��
����. Therefore we can rewrite the

flow equation, Eq. �3�, as a tensor equation

d

d�
�ûnm

� ��
���� = − �


=−N

N

�
i,j=0

M

�ûni
� �


�����K̂ij
��



����ûjm
� ��


��� ,

�9�

where we have imposed an upper limit to the harmonic index
n
M, and to the frequency sum, −N


N. In Eq. �9� we
have used

�ûnm
� ��

���� =� d��� d��ũ��,�,��	n
�����	m

� ���� ,

�K̂ij
���

���� = Kij
����,��
�

�, �10�

with the kernel

Kij
���,�� = �

0

2�

d�
��

��
2 + Z�

2��,���2	i
����	 j

���� . �11�

Therefore Eq. �9� can be written in a compact form as a
�2N+1�M � �2N+1�M matrix equation. The flow equation
has the form

dU�

d�
= − U� · K� · U�, �12�

where the matrix indices j are related to the frequency � and
harmonic n indices by �=IP��j−1� /M�+1 and n= j− ��
−1�M, respectively, where IP denotes the integer part. From
Eq. �12� we obtain one vertex flow equation for each channel
�. Once we have the matrix form of the RG flow equations
for the vertices it is possible to write the exact solution

U���� = �1 + U��0� · P�����−1 · U��0� , �13�

where P������0
�d��K�����. There is an instability of the

Fermi-liquid state when U���c�→� for �=�c. This condition
is fulfilled when

det�1 + U��0� · P��lc�� = 0, �14�

which is equivalent to solving the eigenvalue equation

�1 + U��0� · P���c�� · v� = 0. �15�

The kernel K���� that appears in the vertex flow equations
is given by Eq. �11� and contains self-energy corrections.
The momentum-dependent imaginary part of the self-energy
���� ,k�, with contributions from all the components of the
electron-boson coupling, is related to the quasiparticle
weight by ����� ,��= �1−Z��� ,����. The imaginary part of
the self-energy is renormalized by the bare forward vertices
and the flow equation for the quasiparticle weight Z��� ,��
can be integrated to give

Z����,��� = 1 +
2

���
�

��

�0

d���� d��d��

�
N�0�ũ0��,��Z�����,�����

���
2 + Z��

2 ���,�����
2 , �16�

where ũ0�� ,�� is the retarded electron-electron interaction

ũ0��,�� = u0 − 2g2���,���D��� − ��� . �17�

The self-energy is angle dependent and it appears as a
term in the denominator of K����. Therefore, whereas only
the � component K���� of the kernel contributes to a given
channel �, all � components of the microscopic electron-
boson coupling contribute to K����. The results of this sec-
tion will be used in Sec. IV, where a numerical analysis of
the RG flow equations as well as the �−Wc phase diagram
are studied, Wc being the energy scale of the instability.

III. ELIASHBERG EQUATIONS

Eliashberg theory1,2 of superconductivity was originally
formulated to describe phonon-mediated s-wave supercon-
ductors. By including momentum dependence in the
electron-boson interaction the anisotropic Eliashberg formal-
ism is obtained. The Eliashberg function �2F���, which de-
fines the electron-boson coupling �=2�0

��2F���d� /� car-
ries, in the anisotropic formalism, momentum dependence.
The fully anisotropic Eliashberg formalism has been success-
fully used to study the superconducting properties of MgB2.
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By solving numerically the anisotropic Eliashberg equations
the superconducting transition temperature, the momentum-
dependent superconducting energy gap, and the momentum-
dependent specific heat have been obtained.13,37 Generaliza-
tion of the Eliashberg equations to d-wave superconductivity
has as well been done38 and has been used to investigate the
physics of cuprates.39 As it was shown in Ref. 26, the re-
duced Coulomb repulsion �� or Anderson-Morel potential
emerges naturally from the RG equations as ��=u0 / �1
+�Eu0�, where �E=ln��0 /�E�. The value of Tc, and the ana-
lytical forms of the McMillan7 and Allen-Dynes40,41 expres-
sions are obtained from the RG flow equations.

Here the instability conditions obtained in the Sec. II for
the BCS vertex are mapped into the Eliashberg equations.
The breakdown of the Fermi-liquid state by the SC instabil-
ity due to the retarded electron-electron interactions occurs at
a finite temperature which turns out to be the same critical
temperature Tc obtained from the Eliashberg theory. To in-
vestigate this instability we solve the RG flow equations at
finite temperature. Since the SC instability is approached by
decreasing the temperature, in the equations such as �15�,
where integration over � is involved, this can be extended to
zero. In this formalism, considering a finite value of the tem-
perature T, the quasiparticle weight Z��� ,�� also presents a
T dependence. Taken the appropriate integration limits in Eq.
�16� we obtain a similar expression to Eq. �15�, which gives
the condition for the appearance of the instability and allows
us to obtain the expression for Tc. The integrals over fre-
quencies can be written as Matsubara sums ��d�� / �2��
→Tc��� in Eqs. �15� and �16� leading to

v���n,�� = �Tc�
�m

1

��m����
��,��

� ��n − �m�
v���m,���

Z��m,��,Tc�
,

Z��n,�,Tc� = 1 + �Tc�
�m

�̄���n − �m� . �18�

These two expressions are the set of generalized Eliashberg
equations at Tc, where

��,��
� ��� − ��� � − �

��,��

N�0�ũ0��,�������,�������,���

�̄��
��� − ��� � − �

��

N�0�
2�

ũ0��,�� �19�

with ����� ,��=�p=1
� 	p

�����	p
����. The u0 term that appears

in the definition of �̄��
via ũ0 does not contribute to Z be-

cause it does not have any dependence on frequency, and
therefore the Matsubara sum in Eq. �18� vanishes for this
term. The u0 term in ��,��

� does however contribute to the Eq.
�18� involving v���n ,��. There is one such generalized
Eliashberg equation for each channel �, which depends on
the � component of the initial coupling through ��,��

� as de-
fined in Eq. �19�. However, each of these equations, corre-
sponding to a particular channel �, also depend on the qua-
siparticle weight Z which is renormalized by all the

components of the initial coupling through �̄� as defined in
Eq. �19�.

From the generalized Eliashberg equations one can obtain
the value of Tc in terms of the microscopic parameters. For
the most general case, analytical expressions for Tc are quite
involved. We consider first the special case in which
g��� ,��� is separable, so that it has the form g��� ,���
= f����f����, and set u0=0 for now. Then ��,��

� will also be
separable

��,��
� ��� − ��� = ��

���� − ������
� ��� − ��� , �20�

where

��
���� − ��� � �

��

f2����
2N�0�D��� − ��������,�� .

On the other hand, it is always possible to write

�̄���� − ��� =
1

2�
�

��
�̄���� − ����̄����� − ��� , �21�

where �̄����−��������
����−���. In the general case,

since we know that g��� ,���=g��� ,���, we can use the de-
composition g��� ,���=�i f i����f i����, and therefore

��,��
� ��� − ��� = �

i

�i�
� ��� − ����i��

� ��� − ��� ,

�̄���� − ��� =
1

2�
�

i
�

��
�̄i���� − ����̄i����� − ��� .

�22�

The set of equations derived here reduce to those given by
earlier treatment of Eliashberg theory for anisotropic
electron-boson interaction by Daams and Carbotte,42 if we
consider a single separable channel �=1 and n=1.

If for a given channel � the gap is dominated by one
component s such that the SC gap can be written as �����
=�0	s

���� then the corresponding McMillan expression7 for
Tc becomes

Tc
� 
 �E exp� Z�

��
�1 − ��
	 �23�

where 
�1 restricts the contribution of �� to the channel �
=1 �u0 only has first harmonic of s-wave component�, Z�

−1

=��	q
���� / �1+ �̄���� and

�� = Z��
p
�

��,��,�

����,���	p
����������,��	q

����

1 + �̄���
�24�

with ���� ,����2N�0�g2��� ,��� /�E and �̄���
��2��−1������ ,���. The corresponding Allen-Dynes expres-
sion is

Tc 
 
�̄��E, �25�

where
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�̄� � �
p
�

��,��,�
����,���	p

����������,��	q
���� . �26�

The effective electron-phonon parameter �� �Eq. �24�� that
appears in the McMillan and Allen-Dynes equations for a
particular channel � does include contributions from all com-
ponents of the bare coupling ���� ,��� through Z� and �̄���.

IV. NUMERICAL RESULTS

The method used allows for an easy numerical calculation
of the critical temperature Tc �as well as the zero-temperature
gap �0� from the microscopic parameters u0, ���� ,���, and
�E. Equation �13� gives the RG evolution of all the vertices
and can be evaluated at different RG steps �. To find
the instability one can simply calculate the quantity
det�1+U��0� ·P����� and see when it approaches zero. Here
we study electron-boson couplings with different angular de-
pendences and strengths, going from the weak to the strong-
coupling regimes. We label � as the angle associated to k
�k1=−k2 in polar coordinates, and �� as the angle of k�
�k3=−k4. In general we define g�� ,���=g0f�� ,���, where
g0 is a position-independent constant and the function
f�� ,��� contains the full angular dependence of the electron-
boson matrix elements. We consider two different cases: �a�
the electron-boson coupling only depends on the difference
between the angles of the electrons, �b� the coupling depends
on the exact position of each of the electrons on the Fermi
surface.

A. Solution of the RG flow equations for
g(� ,��)=g0 cos(�−��)

For this kind of angular dependence, the strength of the
electron-boson coupling does not depend on the specific po-

sition of the particles on the FS but only depends on their
relative orientation. By solving Eq. �14� we obtain the evo-
lution of U���� with �. For the coupling g�� ,���=g0 cos��
−���, only three channels contribute, corresponding to s,
dx2−y2, and dxy symmetries, respectively. Furthermore, the
contributions of the two channels with d symmetry have the
same magnitudes, the channels are degenerate, and we will
generically refer to them as d-wave channel. In Fig. 1 the
evolution of U���� with � for the s channel is depicted. Each
panel represents the �2N+1�M � �2N+1�M metric Us��� at a
given RG step �. The matrix elements corresponding to
small frequencies around �=0 are at the center of the panels.
The three top panels of Fig. 1 show the RG flow evolution
for a case in the weak-coupling regime ��=0.4�. The first
panel on the left shows the initial condition for which �=0.
The third one, on the right-hand side, shows the vertices at
�=�c right before the instability. We see that the most diver-
gent couplings are those with frequencies below the Einstein
frequency ���� , ������E. In this case, simple two-step RG
can be applied. The three panels on the bottom of Fig. 1
represent the evolution of the couplings for the strong
electron-boson interaction regime ��=4�. In this case, the
most divergent couplings �at �=�c� are those with frequen-
cies below a given energy scale Wc��E. As expected, these
results are similar to that obtained in Ref. 43 where an iso-
tropic electron-boson coupling was considered. Furthermore,
this can be seen as a proof of the validity of our method,
which matches the results of the isotropic limit when only
the s channel is considered.

The situation is quite different for the d channel as it can
be seen in Fig. 2. Again, the panels on the top correspond to
the weak-coupling regime. The initial condition is the same
as for the s channel, with the ud�� ,−� ,�=0� being the larg-
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FIG. 1. Plots of the �2N+1�M � �2N+1�M matrix U���� at different RG scales � for the s channel ��=1� and for the electron-boson
coupling g�� ,���=g0 cos��−���. Here, for the first harmonic in the expansion �M =1�, the number of frequency divisions is 41 �N=20� and
�0=100, �E=10, and u0=0.1. The three panels on the top correspond to �=0.4 �weak coupling� and the three on the bottom correspond to
�=4 �strong coupling�.
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est couplings. However, close to the instability, the couplings
ud��� ,�� ,�c� that first diverge correspond to a region of
frequencies centered around �=0 and with a starlike shape.
This frequency dependence of ud at the instability point il-
lustrates the importance of retardation effects in the RG flow.
To have a physical understanding of this specific structure is,
however, not trivial and we do not speculate here about the
possible physical consequences of such dependence. On the
other hand, the bottom panels of Fig. 2 represent the flow in
the strong-coupling regime from the initial condition �=0 to
the critical RG step �c. In this case, the most divergent cou-
plings at the instability point are, as in the s-wave case, those
with frequencies below Wc.

In Fig. 3 we show the density plots of the matrix Us��c� at
the RG scale �c, where the instability appears for different
values of the electron-boson coupling strength. At this point
we can see more clearly how the energy scale separating
high and low-energy physics moves from the Einstein fre-
quency �E, in the weak-coupling regime to the critical cutoff
Wc in the strong-coupling regime. The scale Wc can be asso-
ciated with the T=0 superconducting gap �0, or with the

critical temperature Tc of the SC phase in the finite-
temperature formalism.26,43 Figure 3 also illustrates the
breakdown of the two-step RG. In this approximation the
vertex is chosen to be just the electron-electron part for fre-
quencies above the Einstein frequency and to have some
constant contributions from the boson modes for frequencies
below �E.44 This approximation works well in the weak-
coupling limit, where the most divergent couplings are those
with frequencies below �E. But for large ����1� this be-
havior breaks down and the scale for the divergent central
region is on the order of Wc��E.

Similarly, the couplings Ud��c� in the d channel are shown
in Fig. 4, from the weak to the strong electron-boson cou-
pling regimes. We obtain the starlike structure at weak-
coupling ��=1� evolving toward a more circular form in the
strong coupling ��=6�. More analytical studies are required
for a full understanding of these patterns.

Figure 5 shows the energy scale Wc, where the SC
instability occurs, as a function of the strength of electron-
boson coupling � at fixed �E. The two channels �s and d�
that contribute to the electron-boson coupling g�� ,���
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FIG. 2. Same as Fig. 1 but for the d channel ��=2,3�. The three panels on the top are for weak coupling ��=0.4� and the ones on the
bottom are for the strong-coupling regime ��=4�.
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FIG. 3. Coupling matrix Us��c� at the instability point for the s channel, from weak to strong coupling, for u0=0.1. The corresponding
electron-boson coupling is g�� ,���=g0 cos��−���. Panels correspond, from left to right, to �=1,2.5,6.
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=g0 cos��−���, are represented. The behavior of Wc in the
weak-coupling limit follows the McMillan exponential be-
havior of Eq. �23�. For large � strong-coupling regime, the
Wc follows the Allen-Dynes law, Eq. �25�. In the inset of Fig.
5 we show the phase diagram of the system. At finite tem-
perature, the Fermi-liquid phase breaks down toward d-wave
SC in the weak to intermediate coupling range and toward
s-wave SC in the intermediate to strong-coupling regime.
The larger the on-site electronic repulsion u0, the larger the
electron-boson coupling crossover between s-wave and
d-wave superconductivity. This is expected since an isotropic
u0 only suppresses the contribution to the s-wave channel
without affecting the other channels. Therefore for u0=0,
superconductivity only occurs in the s channel. Notice that,
because the Kohn-Luttinger effect is not included in this one-
loop RG calculation, there is no superconducting instability
when only electron-electron repulsion is considered. In addi-
tion, this effect should shift the transition between d-wave
and s-wave superconductivity toward some different value of
the electron-boson coupling �. The qualitative behavior is,
however, well captured by our approximation, as shown in
the phase diagram of Fig. 5.

B. Solution of the RG flow equations for
g(� ,��)=g0 cos(� Õ2)cos(�� Õ2)

In the following we consider an electron-boson coupling
with the angular dependence g�� ,���=g0 cos�� /2�cos��� /2�.

Unlike the previous case, this is a simple example for which
the boson mode couples differently to electrons in different
parts of the Fermi surface. That is, the coupling depends on
the specific position of each of the electrons in the Fermi
surface. As before, we obtain the � evolution of U���� by
solving Eq. �14� for this coupling. The two contributing
channels in this case are of s and p symmetry. The evolution
of Up��� for the p channel at weak electron-boson coupling
shows a star-shaped structure, as it was found in Sec. IV A
for the d channel. The frequency dependence of the coupling
matrix close to the instability is very similar to that repre-
sented in the top right panel of Fig. 2.

In Fig. 6, the density plots of Us��c� are shown for u0
=0.1 and different values of � at the critical RG step �c.
They present the same qualitative behavior as the corre-
sponding s-channel results of the previous subsection �see
Fig. 4�. For the p channel, the density plots of the coupling
matrix Up��c� at the instability point �c are depicted in Fig. 7.
The plot for �=1.0 is very similar to that obtained for the d
channel in the case of a coupling of the form g�cos��−���.
This can be observed by comparing the left-hand side graphs
of Figs. 4 and 7. However, the situation is different in the
strong-coupling limit. The corresponding plot for the d chan-
nel shows that the most diverging matrix elements lie in a
circular shaped region around �=0 �see the right panel of
Fig. 4�. However in the present case, where g
�cos�� /2�cos��� /2�, the diverging matrix elements for the p
channel are confined in a square region around �=0, as
shown in Fig. 7. This different behavior in the strong-
coupling region needs a better understanding.

Finally we mention that it is possible to build a phase
diagram similar to that of Fig. 5, but for a coupling of the
form g�cos�� /2�cos��� /2�. In this case, instead of having a
low-coupling d-wave SC region in the phase diagram, we
obtain a zone with p-wave pairing SC. For a value of u0
=0.5, the crossover between p and s wave superconductivity
occurs at ��2.5. For a small value of the on-site Coulomb
interaction u0=0.1 it is found that the Fermi-liquid state is
unstable toward p-wave SC in the range 0���0.7, and
toward s-wave SC for larger values of the coupling, ��0.7.

V. CONCLUSIONS

In this work we have investigated the pairing instabilities
of the FL state which appear when the electron-boson cou-
pling overcomes the effective repulsive electron-electron in-
teraction. The most general case of anisotropic coupling of
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FIG. 4. Same as Fig. 3 and for the same parameter values, but for the d channel, Ud��c�.

FIG. 5. �Color online� Critical cutoff Wc versus � for the s
channel �black squares� and the d channel �red circles�. The values
of the parameters used are �0=100, �E=10, and u0=2.0. The inset
represents the phase diagram.
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electrons to bosons has been considered. The anisotropic bo-
son exchange couplings are treated by an RG approach. Cal-
culations are made for a 2D square lattice at low fillings.
Under this assumption the system presents an almost circular
FS, which allows for an analytical solution of the RG flow
equations. Furthermore, the numerical evaluation of the
flows provides information of the change in the frequency
dependence of the vertices. The flow equations for the BCS
vertex are decomposed into contributions coming from dif-
ferent symmetry channels with different angular momentum
dependences. By varying the strength of the interaction from
the weak to the strong-coupling regime the evolution of the
couplings for the different symmetry channels is obtained.
Channels of s, p, and d symmetries have been investigated.

We have considered here simple functional forms of the
electron-boson couplings, such as g�� ,���=g0 cos��−���,
where the momentum of the exchanged boson only depends
on the angle difference between the two electrons involved,
and g�� ,���=g0 cos�� /2�cos��� /2�, where the coupling de-
pends explicitly on the position of each of the electrons on
the Fermi surface. It is found that, even with these simple
angular dependences, the anisotropic electron-boson cou-
plings induce new nontrivial physics. . Although academic at
first view, this problem makes contact with the physics which
appears in some new anisotropic materials as those described
in the introduction. In these materials such as metal-
transition borocarbides, boronitrides, magnesium diboride,
or cuprates, standard BCS theory cannot explain many of
their properties. A consistent description of some physical
behaviors is however achieved if anisotropy of the electron-
boson coupling is included in the Eliashberg theory.8,2,25 In

high-temperature superconductors there is a considerable
amount of data that point to the interplay between electronic
and atomic degrees of freedom.45 The different behaviors
shown by the quasiparticles in both nodal and antinodal re-
gions of the Brillouin zone has suggested among other ex-
planations, an anisotropic electron-phonon coupling along-
side other many-body effects in order to understand the
pairing mechanism.46 Coupling to the half-breathing mode in
the nodal region and to the buckling mode in the antinodal
direction have been proposed as an interpretation to the
renormalization effects seen in ARPES results in both the
normal and superconducting phases.25 However, more works
are needed to get insight in the complex interplay between
electron-boson interactions and electronic correlation in un-
conventional superconductivity.

In summary, we have studied the superconducting insta-
bility of the Fermi-liquid phase, considering electron-boson
couplings with different angular dependences and strengths.
SC order parameters of s, p, and d symmetries have been
obtained depending on the anisotropy of the coupling and the
strength of the interaction. The investigation of the frequency
dependence of the couplings of different symmetries could
be interesting in order to analyze and understand the com-
plex behavior revealed by the experiments. Therefore, nu-
merical evaluation of the RG flow equations is instructive in
determining the range of important frequencies in different
regimes and for different symmetry channels. Furthermore,
at the instability point and for finite temperatures, the RG
equations give the solution of the generalized Eliashberg
equations at Tc and consequently McMillan and Allen-Dynes
expressions have been obtained.
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FIG. 6. Coupling matrix Us��c� at the instability point for the s channel, from weak to strong coupling, for u0=0.1. The corresponding
electron-boson coupling is g�� ,���=g0 cos�� /2�cos��� /2�. Panels correspond, from left to right, to �=1,2.5,6.
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FIG. 7. Same as Fig. 6 and for the same parameter values, but for the p channel, Up��c�.
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